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Abstract
In this talk, I discuss how gravity can emerge in a way restoring the gauge symmetries that are explicitly
broken by the UV cutoff, and show how this symmergent gravity kills the destabilizing UV sensitivity of
the Standard Model. I also show that physics beyond the Standard Model is necessary for inducing the
gravitational constant. It does not have to interact with the SM but it can. The resulting setup is in broad
agreement with the existing collider, astrophysical and cosmological searches. The right-handed neutrinos
are predicted to weigh below a 1000 TeV.
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1. INTRODUCTION
The Standard Model (SM), a spontaneously broken renormalizable quantum field theory (QFT) of the strong, electroweak and
inertia (through the Higgs field H) interactions, has shown good agreement with all the experiments performed so far [1, 2]. It
describes physics at the electroweak scale ΛW ≈ 246.2 GeV. It excludes gravity, that is to say, it lives exclusively in flat spacetime.

In spite of its phenomenological successes, the SM is far from being a complete theory. This is because it is plagued by enigmatic
problems like destabilizing UV sensitivities [3], exclusion of gravity [4], absence of cold a dark matter candidate (CDM) [5], and
oscillations of neutrinos [6]. These problems cannot be addressed without new physics beyond the SM and, on phenomenological
grounds, it is not difficult to anticipate that

new physics = gravity︸ ︷︷ ︸
GR

+ a QFT beyond the SM containing right-handed neutrinos (BSM)︸ ︷︷ ︸
feebly interacting

(1.1)

where general relativistic (GR) structure of gravity is set by the working LCDM model of the universe [7], and feebly interacting
nature of the BSM sector is hinted at by negative results at colliders and other searches [2, 7, 8, 9].

It is by macroscopic reality that incorporation of GR into the SM is foremost among all the problems plaguing the SM. In fact,
inconsistency of the classical GR [10] and unavailability of quantized GR [11, 12] can be taken to imply that the whole process of
incorporation is actually emergence of GR upon the SM + BSM setup. The way GR emerges depends on the underlying mechanism
[13] as is known, for instance, from Sakharov’s induced gravity [14].

Voiced in this talk is a new mechanism [15, 16, 17] in which gravity, in stark contrast to those in the literature [13], emerges in a way
restoring gauge symmetries that are explicitly broken by the UV cutoff [18]. It is for its symmetry-driven, emergent nature that it is
called symmergent gravity. It leads to a curved spacetime QFT wherein

1. destabilizing UV sensitivities disappear in agreement with the measured Higgs boson mass [19],

2. symmergent gravity, devoid of any higher-curvature terms, conforms to the observed LCDM structure [7],

3. non-interacting CDM becomes a potential possibility as confirmed by negative searches [9],

4. new particles in the TeV domain stop being a necessity as encouraged by the current LHC data [2],

5. and finally, right-handed neutrinos are to have masses below 1000 TeV reminding previous determinations [20].

The following sections give hows, whys and whats of these points.

2. DESTABILIZING UV SENSITIVITIES OF THE SM
If the ATLAS and CMS experiments have revealed anything other than the Higgs boson it is that the SM holds good up to several
TeVs [2]. This is the energy reach at the LHC. It will get higher and higher at future colliders of higher and higher energy. It separates
the known physics below from the unknown physics above. One known thing about the unknown physics is that the field-theoretic
structure describing it, the SM or the SM plus some BSM, must come to a halt at some UV boundary ΛU . This field-theoretic end
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point, a genuinely physical scale rather than a regularization tool, must exist to seed the Planck mass MPl ≈ 2.4 × 1018 GeV upon
the emergence of gravity.

In general, what is tested at a collider of energy reach ΛX is the effective QFT below ΛX. This is true also for the LHC, which seems
to have found merely the particles and couplings of the SM within the resolving power of 30 fb−1 luminosity. This experimental
result, despite its attest of the SM around ΛX, can tell nothing about high energies especially when the BSM is scale-separated. In
this case, a prudent approach would be to let the SM reign everywhere up to ΛU , study the effective SM below ΛW , and determine
the ignored BSM through physical consistency. In this context, in terms of frequency E, integration of the fast modes ψΛW<E<ΛU
out of the SM leads to a QFT of the slow modes ψE<ΛW , where ψ collectively denotes all the leptons and quarks as well as the Higgs
and gauge bosons in the SM. This low-energy QFT is described by the SM effective action

Se f f

(
η, ψ,

ΛW

ΛU
, Λ2

U − Λ2
W , Λ2

U + Λ2
W

)
= Stree (η, ψ) + δSlog

(
η, ψ, log

ΛW

ΛU

)
+ δSO

(
η, Λ2

U − Λ2
W , Λ2

U + Λ2
W

)
+ δSH

(
η, H, Λ2

U − Λ2
W

)
+ δSV

(
η, V, Λ2

U − Λ2
W

)
(2.1)

in which ηµν is the flat metric, ψ ≡ ψE<ΛW are the slow SM fields, H ≡ HE<ΛW is the slow Higgs field, andVµ ≡ Vµ E<ΛW are
the slow gauge fields (photon, gluon, W and Z). These fields, whose wavelengths are longer than 1/ΛW , interact via loop-induced
couplings of varying UV sensitivity.

The IR scale ΛW and the UV scale ΛU appear in the SM effective action Se f f in three distinct combinations. The first

ΛW

ΛU
(2.2)

is the IR/UV hierarchy, which must be preserved for gauge/gravity hierarchy to form correctly upon the incorporation of gravity.
The second

Λ2
U + Λ2

W (2.3)

is the highest scale in the setup, and it must be what sets MPl while gravity emerges. The third

Λ2
U − Λ2

W (2.4)

is the UV-IR splitting, which is hard to make sense at this stage but, as will be shown in the sequel, it seeds the spacetime curvature.
It is these three combinations that make the effective SM to sense the UV boundary differently in different sectors. The tree-level
SM action Stree and the logarithmic corrections δSlog both lie at the Fermi scale. But, the other three

δSO = −
∫

d4x
√
−η cO

(
ΛW

ΛU

)
(Λ2

U − Λ2
W)(Λ

2
U + Λ2

W) (2.5)

δSH = −
∫

d4x
√
−η cH

(
ΛW

ΛU

)
(Λ2

U − Λ2
W)H† H (2.6)

δSV =
∫

d4x
√
−η cV

(
ΛW

ΛU

)
(Λ2

U − Λ2
W)Tr

[
VµVµ

]
(2.7)

lie at the UV boundary such that their Wilson coefficients cO, cH , cV depend only on the hierarchy in (2.2). It is these UV-born
quantum corrections that destabilize the SM. In effect, they give cause to four major problems:

1. The shift in the vacuum energy

δV = cO

(
Λ2

U − Λ2
W

) (
Λ2

U + Λ2
W

)
(2.8)

inflicted by δSO varies quartically with the UV scale via the sum (2.3) times the difference (2.4). It poses no problem in flat
spacetime but it can give cause to the notorious cosmological constant problem [21] depending on how gravity emerges. This
indeed is what happens in Sakharov’s induced gravity[14].

2. The correction to the Higgs boson mass

δm2
H = cH

(
Λ2

U − Λ2
W

)
(2.9)

from δSH varies quadratically with the UV scale through (2.4), and gives cause to the fatal big hierarchy problem [3, 22].

3. The change in the gauge boson masses

δM2
V = cV

(
Λ2

U − Λ2
W

)
(2.10)

due to δSV varies quadratically with the UV scale through (2.4), and leads to explicit breaking of color and electromagnetism [18].
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4. The correction to the Higgs boson mass (
δm2

H

)
F

∝ λFm2
F log

mF
ΛU

(2.11)

due a BSM field F with mass mF and coupling λF to the SM fields can destabilize the SM when λHFm2
F ≳ Λ2

W . This problem,
the so-called little hierarchy problem [23], is caused not by the UV physics but by the mixing between the SM and the BSM.

It is only after the solution of these four problems that the SM can qualify as the working model of physics at the Fermi scale. Their
solutions are what this talk is all about.

3. GAUGE INVARIANCE AND EMERGENT CURVATURE
The gauge part δSV is disastrous. It must be neutralized for color and electromagnetism to be exact and electroweak breaking to be
spontaneous. One possible mechanism, which was first proposed in [15, 16] and furthered in [17], neutralizes δSV by incorporating
curvature in a way restoring gauge invariance. To elucidate the mechanism rigorously, the first move is to form the overt identity

δSV

(
η, V, Λ2

U − Λ2
W

)
= δSV

(
η, V, Λ2

U − Λ2
W

)
− I(η, V) + I(η, V) (3.1)

in which the gauge-invariant kinetic construct

I(η, V) =
∫

d4x
√
−η

cV
2

Tr
{

ηµαηνβVµνVαβ
}

(3.2)

is subtracted from and added back to δSV . This construct, composed of the loop factor cV and the field strength Vµν, conduces to

δSV

(
η, Λ2

U − Λ2
W

)
= −I(η, V) +

∫
d4x
√
−ηcVTr

{
Vµ
(
−D2ηµν + DµDν + Vµν +

(
Λ2

U − Λ2
W

)
ηµν

)
Vν + ∂µ

(
ηαβVαVβµ

)}
(3.3)

if, at the right hand side of (3.1), δSV is replaced with its expression in (2.7), “− I(η, V)” is kept untouched, and “+ I(η, V)” is
integrated by-parts in terms of the gauge-covariant derivative Dµ.

The second move is to go from the flat spacetime of ηµν to curved spacetime of a putative curved metric gµν. This change, occurring
under the auspices of the equivalence principle, is implemented via the generalization

ηµν ↪! gµν (3.4)

under which the identity (3.3) takes the form

δSV

(
g, Λ2

U − Λ2
W

)
= −I(g, V) +

∫
d4x
√
−gcVTr

{
Vµ
(
− gD2gµν +

gDµ
gDν + Vµν +

(
Λ2

U − Λ2
W

)
gµν

)
Vν + g∇µ

(
gαβVαVβµ

)}
(3.5)

where gDµ is gauge-covariant derivative with respect to the covariant derivative g∇µ of the Levi-Civita connection gΓλ
µν. This action

is, however, far from complete. The reason is that it lacks the curvature invariants required to make sure that the putative curved
metric gµν is not a mere renaming of the flat metric ηµν.

The third move is, therefore, incorporation of curvature into (3.5). This matter, not as straightforward as it seems, can be tackled in
two distinct ways:

3.1. Added curvature.
The first way that comes to mind, which is the standard procedure for carrying classical field theories into curved geometry, is to
add appropriate curvature invariants by hand. In this context, the identity (3.5) takes form

δ̃SV

(
g, Λ2

U − Λ2
W

)
= δSV

(
g, Λ2

U − Λ2
W

)
−
∫

d4x
√
−g
{

M̃2gµνRµν (
gΓ) + higher-curvature terms

}
(3.6)

after adding by hand an Einstein-Hilbert term with fundamental scale M̃ and possible higher-curvature terms. The problem with
this action, apart from the persistence of gauge symmetry breaking, is that neither M̃ nor various couplings in higher-curvature
terms are calculable. This is because matter loops have all been used up in forming the flat spacetime effective action Se f f . There
are thus no loops left to induce any extra interaction, with or without curvature. This incalculability constraint, which reveals the
difference between classical and effective field theories in regard to their images in curved spacetime, renders (3.6) completely
unphysical. It thus follows that adding curvature by hand does simply not work.
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3.2. Emergent curvature.
Curvature must be born from an existing mass scale for not to plague (3.5) with unknown, incalculable parameters. It can actually
be conjectured to emerge from the single mass scale Λ2

U − Λ2
W in (3.5) via the generalization(

Λ2
U − Λ2

W

)
gµν ↪! Rµν (Γ) (3.7)

in which Γλ
µν, an affine connection with Ricci curvature Rµν(Γ), is a new geometrical field bearing no relationship to metric gµν and

its Levi-Civita connection gΓλ
µν. The affine curvature Rµν (Γ), as remarked below (2.4), throws the identity (3.5) into metric-affine

geometry [24] in the metamorphic form

δSV (g, R (Γ)) = −I(g, V) +
∫

d4x
√
−gcVTr

{
Vµ
(
− gD2gµν +

gDµ
gDν + Vµν + Rµν (Γ)

)
Vν + g∇µ

(
gαβVαVβµ

)}
(3.8)

in which each and every gauge field is massless yet the SM gauge symmetries are still explicitly broken. This breaking is because
connection is not Levi-Civita but affine (Γλ

µν ̸= gΓλ
µν). And affine structure is mandatory for nonvanishing curvature in (3.7) to be

consistently reconciled with the flat metric in (3.4). Indeed, reduction of (3.8) to (3.3), for instance, proceeds without contradiction
simply because while the first step Rµν (Γ) ; (

Λ2
U − Λ2

W

)
gµν fixes the affine connection, the second step gµν ; ηµν does the metric.

On the other side of the coin, the one-step reduction gµν ; ηµν in metrical geometry, which reconciles vanishing curvatures in (3.6)
with the flat metric in (3.4), is already consistent. The two geometries are contrasted in Table 1 in different aspects.

Gravity Theory Field Theory Road to Flat Spacetime Field Theory (e.g. (3.3))

Added Curvature (e.g. (3.6)) metrical gravity (GR) Classical gµν ; ηµν

Emergent Curvature (e.g. (3.8)) metric-affine gravity Effective Rµν (Γ) ; (
Λ2

U − Λ2
W

)
gµν //gµν ; ηµν

TABLE 1: Contrasting metrical (added curvature) and metric-affine (emergent curvature) geometries in regard to their gravita-
tional and field-theoretic structures as well as their reduction to the flat spacetime.

The quirky thing about the affine connection Γλ
µν is that it is dynamically driven towards gΓλ

µν. In other words, its equation of
motion possesses the solution

Γλ
µν = gΓλ

µν +O
(

Λ3
W

M2
Pl

)
(3.9)

as will be revealed in the next section when curvature sector is completed by the image of δSO + δSH under (3.7). This relation
between Γλ

µν and gΓλ
µν ensures that the metric-affine action (3.8) is dynamically equivalent to the metrical action

δSV (g, R (gΓ))= −I(g, V)+
∫

d4x
√
−gcVTr

{
Vµ

(
− gD2gµν +

gDµ
gDν+Vµν+Rµν (

gΓ)+O
(

Λ6
W

M4
Pl

))
Vν+ g∇µ

(
gαβVαVβµ

)}

= −I(g, V) + I(g, V) +O
(

Λ4
W

M4
Pl

)
≈ 0 (3.10)

whose vanishing ensures that the SM gauge symmetries are all restored up to Planck-suppressed small breaking effects. It there-
fore is guaranteed that SU(3)C ⊗ U(1)EM remains unbroken at all scales, and SU(2)L ⊗ U(1)Y gets broken spontaneously and
only spontaneously at the electroweak scale MEW . This is made possible by the emergence of curvature in (3.7) and the dynamical
equivalence in (3.9).

There is an unsaid delicacy in (3.10), however. Indeed, its first line can yield the second via by-parts integration if cV is constant.
This means that

ΛW

ΛU
must be kept unchanged (3.11)

while curvature emerges through (3.7). This is a pivotal condition. It ensures, in accordance with (2.2), that the IR/UV hierarchy is
preserved. It also ensures that cO, cH and similar coefficients in δSlog all remain unchanged under (3.7).

Having associated Λ2
U − Λ2

W to curvature as in (3.7) and preserved ΛU/ΛW as in (3.11), what remains to be interpreted is the sum
Λ2

U + Λ2
W . It is the largest scale in the setup and, as remarked below (2.3), it should pertain to MPl . It therefore is conceivable that

Λ2
U + Λ2

W must also be kept unchanged (3.12)

under (3.7). It is thanks to the constraints (3.11) and (3.12) that the curved spacetime SM effective action to be established will carry
ΛU and ΛW as its UV and IR scales.
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4. SYMMERGENT GRAVITY
Under the generalizations (3.4) and (3.7), the flat spacetime SM effective action in (2.1) varies to take the metric-affine form

Se f f

(
g, ψ,

ΛW

ΛU
, R(Γ), Λ2

U + Λ2
W

)
= Stree(g) + δSlog(g) + δSO

(
g, R(Γ), Λ2

U + Λ2
W

)
+ δSH

(
g, R(Γ)

)
+ δSV

(
g, R(Γ)

)
(4.1)

= Stree(g) + δSlog(g) + δSV

(
g, R(gΓ)

)
−
∫

d4x
√
−g
(

QµνRµν(Γ)− cVTr{VµVν}Rµν(
gΓ)
)

(4.2)

if the conditions in (3.11) and (3.12) are met. The vacuum, Higgs and gauge sectors in (4.1) combine to give

Qµν =
M2

Pl
2

gµν +
cH
4

H† Hgµν − cVTr{VµVν} (4.3)

in (4.2) such that the Planck scale takes shape as

M2
Pl =

cO
2

(
Λ2

U + Λ2
W

)
(4.4)

in accordance with the remarks below (2.3). The action (4.2) stays stationary against variations in Γλ
µν if

∇λQµν = 0 (4.5)

the solution of which

Γλ
µν = gΓλ

µν +
1
2

Qλρ
(

g∇µ(Q−1)νρ +
g∇ν(Q−1)ρµ − g∇ρ(Q−1)µν

)
(4.6)

reduces to the solution in (3.9) due to enormity of the Planck scale. Inclusion of the spin connection [24, 25] does not affect this result.

The connection in (4.6), with the approximate form in (3.9), causes the action (4.2) to gain to the metrical equivalent

Se f f

(
g, ψ,

ΛW

ΛU
, R(gΓ), M2

Pl

)
= Stree (g, ψ) + δSlog

(
g, ψ, log

ΛW

ΛU

)
−
∫

d4x
√
−g

{
M2

Pl
2

gµνRµν(
gΓ) +

cH
4

H† HgµνRµν(
gΓ)

}
(4.7)

up to O
(
Λ6

W /M2
Pl
)

higher-dimension, curvature-free SM operators that can potentially break gauge symmetries as in (3.10). This
action is nothing but the curved spacetime SM effective action. Its gravity sector, which is precisely the Einstein-Hilbert action,
has emerged through (3.4) and (3.7) and restored the SM gauge symmetries dynamically through (3.9). It can be called symmergent
gravity to highlight its symmetry-restoring, emergent nature. Its physics implications fall into two broad categories:

1. The action (4.7) is wholly set by the flat spacetime loops. This leads to three momentous features:

a) In gravity sector, the Wilson coefficients cO and cH have no relation to the corresponding DeWitt coefficient a1 [14, 26]
pertaining to QFTs in curved backgrounds. The two, contrasted in Table 2, might therefore be distinguished via the Higgs
dynamics in strong gravity regions [27].

b) In fields sector, the logarithmic part, with all symmetries restored, can naturally be interpreted in the language of dimen-
sional regularization. Indeed, the evidential correspondence

log
ΛU

ΛW
=

1
ϵ
+ log

µ

ΛW
(4.8)

expresses the SM amplitudes in terms of the matching scale µ after subtracting 1/ϵ terms in MS or MS renormalizations.
Their independence from µ leads to the renormalization group equations.

c) In curvature sector, higher-curvature terms like
(

gµνRµν(gΓ)
)2, Rµν(gΓ)Rµν(gΓ), . . . are absent even at the O

(
Λ6

W /M2
Pl
)

order. This property makes a case for the Einstein gravity.

2. The action (4.7) is cleared of all power-law UV sensitivities. This leads to three stabilization features:

a) The UV-sized gauge boson mass corrections in (2.10) have all vanished thanks to the symmergent nature of gravity. This
means that color and electromagnetism are both restored up to tiny O

(
Λ6

W /M2
Pl
)

breaking effects.
b) The UV-sized Higgs mass correction in (2.9) has turned into the Higgs-curvature coupling. This means that the big hierar-

chy problem is solved.
c) The UV-sized vacuum energy in (2.8) has metamorphosed to become the Einstein-Hilbert term. This means that the

cosmological constant has shrunk from O
(

M2
Pl
)

down to O
(
m2

ν

)
.

In symmergent gravity, the cosmological constant problem is resolved only in the UV end. The remnant O
(
Λ4

W

)
vacuum

energy gets contributions from rest energies, electroweak breaking and parton-hadron transition. These physically dis-
tinct contributions, bearing at most logarithmic UV sensitivity, measure tantalizingly bigger than the observational value
O
(
m4

ν

)
. This is the IR end of the cosmological constant problem. It is yet to be understood.

In consideration of these properties, symmergent gravity is contrasted with Sakharov’s induced gravity in Table 2.
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Gravity
Sector

Ultraviolet
Sensitivity

Cosmological
Constant

Higgs
Mass

Color and
Electromagnetism

Induced
Gravity

Einstein-Hilbert +
Higher Curvature

Quartic, Quadratic,
Logarithmic Λ4

U/M2
Pl ≃ M2

Pl ≃ MPl Broken

Symmergent
Gravity

Metric-Affine ∼=
Einstein-Hilbert Logarithmic Λ4

W /M2
Pl ≃ m2

ν ≃ ΛW Exact

TABLE 2: Contrasting symmergent gravity with Sakharov’s induced gravity [14] for MPl
∼= ΛU .

5. PHYSICS BEYOND THE SM
Symmergent gravity, structuring MPl as in (4.4), must ensure that gravity is attractive (cO > 0) and is the weakest force(
Λ2

U + Λ2
W < M2

Pl
)
. Both of these constraints are satisfied if

cO > 2 (5.1)

as concluded from (4.4). Direct calculation gives

cO =
nb − n f

64π2 (5.2)

at one loop in a QFT with nb bosons and n f fermions. In the SM, nSM
b − nSM

f = −62 < 0. This means that the SM must necessarily

be extended, as anticipated in (1.1), by some BSM sector with nBSM
b bosons and nBSM

f fermions such that

nBSM
b − nBSM

f > 1325 (5.3)

at one loop. To be able to satisfy this one-loop bound or more general condition (5.1),

the BSM sector must be quartically UV sensitive like (2.5) in the SM (5.4)

but quadratic and logarithmic sensitivities are not a necessity. Moreover, since all that is required of it is to enable (5.1) and (5.3),

the BSM sector does not have to interact with the SM unless experiment reveals that it must. (5.5)

This property is precisely what distinguishes symmergence from the other known completions of the SM (supersymmetry, extra
dimensions and compositeness). In symmergent gravity, BSM fields, which can have, none to significant, any couplings to the SM,
come in three distinct classes, as indicated in Figure 1. In the other completions, however, BSM fields (superpartners, Kaluza-Klein
modes, technifermions) have significant couplings to the SM, and they therefore fall into the SM-charged BSM class in Figure 1.

FIGURE 1: Three possible subclasses of the BSM fields in symmergent gravity.
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5.1. Noninteracting BSM.
This BSM subclass is made up of the SM-singlet fields that do not couple to the SM fields. It could be modeled using, as highlighted
in Figure 1, non-Abelian gauge bosons Xµ of high-rank gauge groups like

GBSM = SO(51), SU(3)83, SU(5)26, SU(26), E(8)3, . . . (5.6)

and also SM-singlet fermions χ charged under GBSM so that nXµ
− nχ satisfies the bound (5.3). Its action

SBSM (g, R)=
∫

d4x
√
∥g∥

{
− 1

2
Tr
{

gµαgνβXµνXαβ
}
+χ(i /D − mχ)χ

}
(5.7)

involves no interaction terms with the SM because hypercharge (no Abelian gauge fields in the BSM), lepton (no singlet fermions
in the BSM), and Higgs (no scalars in the BSM) portals are all sealed off. It gives cause to three observable effects:

1. If the gauge group GBSM confines then hadrons of χ or glueballs of Xµ can source the CDM [5]. If not, χ itself sources it. The
resulting CDM, in either case, is pitch-dark or ebony in that no experiment can detect it. In fact, the present experimental fact
[9] that the CDM seems to reveal itself via only gravitational interactions can be taken as an indication for this ebony matter.

2. Mesons of χ and glueballs of Xµ can source also dynamical dark energy. It affects cosmic evolution differently than the
cosmological constant and, in the face of the most recent CMB measurements preferring the cosmological constant, its role
might be to interpolate between the values of Hubble constant obtained by CMB and local luminosity measurements [28].

3. In symmergent gravity, cosmological constant is reduced by some 60 orders of magnitude compared to Sakharov’s induced
gravity. There are, however, another 60 orders of magnitude to go to agree with observations. This extra stage can be fa-
cilitated by ultra-light (much lighter than ΛW) non-interacting particles in the BSM since some yet-to-be-found mechanism
acting on them can reduce the cosmological constant from the neutrino scale down to the Hubble scale [21] (see Table 2).

The noninteracting BSM, which would crystallize further with the solution of the cosmological constant problem, may well be the
underlying reason for not detecting any new particles in collider, astrophysical and cosmological searches.

FIGURE 2: The allowed and disallowed regions in λF–m2
F plane according to the Higgs stability constraint (5.9).

5.2. Interacting SM-neutral BSM.
This BSM subclass involves SM-singlet fields that directly interact with the SM. They can be scalars S, Abelian gauge bosons Vµ

and right-handed neutrinos N which, respectively, couple to the SM Higgs field as λS(H† H)(S†S), the hypercharge gauge boson
Bµ as

√
λV BµνVµν, and the lepton doublet L as

√
λN LHN. Their loops lead to the Higgs mass shifts(

δm2
H

)
F

∝ λF m2
F log

mF
ΛU

(5.8)

which exceeds m2
H itself when λF m2

F ≳ Λ2
W . These corrections are induced not by the UV boundary but by the SM-BSM mixing.

Their suppression is therefore a field-theoretic problem [29]. And solution lies not in trying to suppress
(
δm2

H
)

F despite large λF m2
F

but in constructing an SM completion that naturally admits

λF m2
F ≲ Λ2

W (5.9)
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for each and every F = S, V, N. It is here that symmergence again comes to the fore because its workings do not necessitate any
SM-BSM mixing and imposition of the bound (5.9) poses no problem at all.

The constraint (5.9), according to which heavier the BSM fields tinier their couplings to the SM fields, corresponds to the region
below the solid curve in Figure 2. It is in this limited domain that the SM remains stable. And the right-handed neutrinos happen
to have a mass

mN ≲ 1000 TeV (5.10)

if they are to obey the bound (5.9) and yield the active neutrino masses mν < 1 eV [8, 20].
There are at present no experimental signals for scalars S and vectors Vµ but they, if discovered in future, are expected to obey

(5.9). Nevertheless, the SM-singlet scalars S play a crucial role in modeling strong CP problem, baryogenesis, inflation and flavor
[17], wherein the bound (5.9) is commonly employed to separate the high-scale physics from the SM.

5.3. Interacting SM-charged BSM.
This BSM subclass involves SM-charged fields like extra Higgs doublets, squarks, Kaluza-Klein modes, technifermions and the
like. However, the bound (5.9) with λF ∼ O(1) implies that such SM-charged BSM fields must weigh at the electroweak scale. But
then current LHC bounds [2] imply that such fields do possibly not exist at all. In other words, the light gray region in Figure 1
must be empty.

6. CONCLUSION
Symmergent gravity, emergence of gravity for gauge symmetry reason, is a new phenomenon. It neutralizes the destabilizing UV
sensitivities in the SM by incorporating Einstein gravity and predicts a crowded SM-neutral BSM sector that can weakly interact
with the SM. It does not necessitate any interactions between the SM and the BSM, and thus, sets a playground for interpreting the
current collider, astrophysical and cosmological results.

Symmergent gravity, as a new framework, can be furthered in different directions. One direction, as emphasized in the text, refers
to the cosmological constant problem. Indeed, the cosmological constant has to be reduced from the neutrino scale down to the
Hubble scale to agree with observations. This is a highly intricate problem in that the BSM physics must have requisite structures
to neutralize the SM vacuum energy. Besides the cosmological constant, dark energy, dark matter and SM-neutral BSM can be
modeled in parallel with experimental developments.
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